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Abstract 

 

An optimal control methodology of drug therapy can produce a drug dosing strategy to 

reducing the cost of treatment, making patient’s healing faster or stabilizing his/her case. 

Some models of the controlled treatment of diseases such as HIV infection were proposed in 

different works. 

 

In this paper, we use neural network with a single hidden layer to identify the optimality of 

drug treatment of HIV infection of CD4+ T-cells. The choice of single hidden layer was 

justified. A training set was generated by a numerical simulation model of treatment through 

a semi-implicit finite difference method. We used the back-propagation algorithm to perform 

and demonstrate the effectiveness of this neural approach. The result of this work is a neural 

network able to mimic and predict the interaction between HIV and the immune system 

under drug therapy. 

 

Introduction 

 

The human immunodeficiency virus (HIV) is a lentvirus that attacks the immune system and 

causes the acquired immunodeficiency syndrome (AIDS), a condition in humans in which 

the immune system begins to fail, leading to life-threatening opportunistic infections.  

 

The CD4+T-cells are a subset of white blood cells that play an important role in the body’s 

immune system. The CD4+T-cells are the key to HIV replication. Since HIV is a retrovirus, 

it needs cells from a “host” in order to replicate. In HIV cases, CD4+T-cells are the host cells 

that aid HIV replication. HIV attaches to the CD4+T-cells, allowing the virus to enter and 

infect the CD4+T-cells, damaging them in the process. The fewer functioning CD4+T-cells, 

the weaker the immune system and therefore the more vulnerable a person is to infections 

and illnesses [2]. 

 

Some antiretroviral drugs are available nowadays that help the immune system in preventing 

the infection due to HIV, even though it is not possible to cure it. Use of reverse transcriptase 

inhibitors is one of the chemotherapies that opposes the conversion of RNA of the virus to 

DNA (reverse transcription), so that the viral population will be minimal. On the other hand, 

the  CD4+T-cell count remains higher and the host can survive. Another one is the protease 

inhibitors that prevent the production of viruses from the actively infected CD4+T-cells. This 
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kind of therapy has prolonged the life of infected individuals; however, the drug cost for this 

type of treatment is high [3] and side effects can be potentially severe. Therefore, the 

question is whether there exists a drug treatment schedule that can sustain a low viral load 

and a healthy immune system while minimizing the amount of drugs used. This suggests an 

optimal control approach to treatment scheduling. 

 

Significant efforts have been evidenced in the research literature on modeling of 

physiological and immunological response of HIV in individuals. For excellent reviews of 

the various types of modeling attempts, see [4, 5]. Some models consider the dynamics of the  

CD4+T-cells and virus populations as well as the effects of drug therapy [6-8]. There are also 

some models that include an intracellular delay [9, 10]. 

 

Two optimal treatments of HIV infection model were proposed in [1]; in this work, the 

optimal controls represent the efficiency of drug treatment in inhibiting viral production and 

preventing new infections. We use a neural network with a single hidden layer to identify the 

optimality of these drug treatments. 

 

Identification using neural network modeling, permits a nonlinear multivariable processes. 

The result of this identification seems a good compromise for systems that are difficult to 

model by conventional methods. A neural network has the ability to learn sophisticated 

nonlinear relationships, providing an ideal means of modeling complicated nonlinear systems  

[11-13]. 

 

This paper describes the controlled mathematical model of HIV infection with two control 

terms presented in [1], presents the neural network model for identification, and discusses the 

identification result. 

 

Mathematical Model of HIV Infection with Two Control Terms  

 

An optimal therapy was presented in [1] in order to minimize the cost of treatment, reduce 

the viral load, and improve immune response by using the model presented in [14] that 

incorporates the cure of infected cells. Two controls that measure the efficiency of reverse 

transcriptase and protease inhibitors were used, respectively, and two types of virus particles 

were included into the model to examine the effect of protease inhibitors. We use this model 

and recommend that the reader see those papers for more complete background [1]. 

 

Let (x), (y), (vI) and (vNI) denote, respectively, the concentration in mm
-o 

of uninfected  

CD4+ T-cells, infected cells, infectious virus and noninfectious virus. The model is given by 

the nonlinear system of differential equation 1, presented as follows: 

 

                                     (1) 
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 : Uninfected CD4+ T-cells production rate  

: Uninfected CD4+ T-cells death rate 

 : Rate CD4+ T-cells become infected by virus 

 : Death rate of infected CD4+ T-cells 

 

Free virus production rate by infected cells at a rate and cleared at a rate . Some infected 

cells may also revert to the uninfected state by loss of all cccDNA from their nucleus at a 

rate . 

 

 and  are the control functions, and   represents the efficiency of drug therapy 

in blocking new infection, so that infection rate in the presence of drug is . 

 represents the efficiency of drug therapy in inhibiting viral production, such that the 

virion production rate under therapy is . 

 

The existence of an optimal control pair was demonstrated in [1], using a result by Fleming 

and Rishel [17] and Hattaf and Yousfi [18]. 

 

Neural Network for Identification 

 

Several types of neural networks exist; the difference between them is their size, and, in the 

case of layered neural network architectures, the number of layers in a network, the number 

of nodes per layer, and the number of connections. A neural network can identify a non-

linear correspondence  during a learning phase; it can learn how to associate 

correctly output patterns  to input patterns . It was proven in [19, 20], based on classic 

mathematical result of Kolmogorov that for any continuous mapping  

 , they must exist in a three-layer neural network having an input layer 

with  processing elements, a hidden layer with (2n + 1) processing elements, and an output 

layer with  processing elements that implements  exactly. This result gave hope that neural 

networks would turn out to be able to approximate any function that arise in the real world. 

George Cybenko [21] proved that a single hidden layer feed-forward neural network can 

approximate any continuous and multivariate function. He also proved that a failure with 

such neural nets would be caused by bad weights, learning rate, etc. For more, see [22]. 

Therefore, a feed-forward neural network with one hidden layer (three layers) is 

implemented to identify the system (Figure 1). The number of processing elements per layer 

is fixed, using the Hecht-Nielsen theorem [23]. 
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Figure 1. One hidden layer feedforward network architecture with sigmoidal activities 

 

Neural Approach 

 

We have to identify the solutions of controlled system (Figure 1) with variables , . 

The semi-implicit finite difference method was used in [1] as a numerical algorithm and 

interesting results were found; we first reproduced the same results for constructing a 

learning basis network and then used a neural network for identification according to Figure 

2. 

 

 
 

Figure 2. Identification process using neural networks 

 

The following steps describe our method: 

 

a. Generation and normalization of training data 

b. Network generation 

c. Network learning using back-propagation method and training data 

d. Validation of results 
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Generation and Normalization of Training Data   

 

The network learning using standardized data generates efficient results. Different methods 

can be used for data normalization in [24], and two effective methods were represented: 

linear transformation and statistical standards. We use the linear transformation with a slight 

modification. The principle of this method is simple: first, we look for the minimum and 

maximum data and then convert the data is converted using 

 

                                   (2) 

 

The following changes allow having values between   and   
 

           (3) 

 

Network Generation 
 

Our neural network is a feed-forward network with one hidden layer of sigmoidal 

nonlinearities. We used the proven result in [23] to fix the number of neurons in the hidden 

layer and adjusted this number in simulation. The hidden layer is fully interlayer connected 

to both input and output layer; each neuron of the hidden layer is connected with all entries, 

and each network output is connected with all hidden neurons. 

 

The neurons are characterized by their sigmoid activation function, their bias, and the 

weights of the connections with the entries. We randomly initialize the parameters of the 

network weights and biases to small values between 0 and 1. 
 

Network Learning Using Back-Propagation Method and Training Data  

 

The network’s learning is a stage that poses difficulties most of the time. The back-

propagation algorithm has been used in many cases to perform the network’s learning [23]. 
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Figure 3. Training process 

 

A particular case of training data is fed through the network in a forward direction, producing 

results at the output layer:  

 

 
 

Figure 4. Propogation process in neural network 

 

The modified back-propagation method presented in [25] is employed in our training process 

to ensure and accelerate the algorithm convergence. In this version of back-propagation, the 
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network weights are not updated after each pattern is presented. Rather, the weights are 

modified only after all training input patterns have been presented.  

 

Changes in weight are calculated as follows: 
 

         (4) 

Where    

 

        if intermediate node                                          (5) 

  

        if output node                                                 (6) 

 

 

 is the “emitting” or “preceding” layer of nodes,  is the “receiving” or “subsequent” layer of 

nodes,  is the layer of weights between node layers  and , pj is the layer of weights 

between node layers p and , weights are specified by w, node activations are specified by , 

delta values for nodes are specified by , subscripts refer to particular layers of nodes  

or weights , “sub-subscripts” refer to individual weights and nodes in their respective 

layers, learning rate , and  is the momentum factor. 

 

Note that  represents the iteration number rather than the presentation number, since the 

weights are updated only once per iteration through all training patterns. 

 

The total error for all training patterns is calculated at any iteration. If the total error is 

reduced, then the learning rate  is multiplied by a factor  for the next iteration. Else, if 

the error is more than a few percent above the previous value, all changes to the weights are 

rejected, and  is multiplied by a factor and is reduced to 0. For more, see [25]. 
 

Simulation Study 

 

The therapy is described by four variables: denoting respectively the 

concentration in  of uninfected CD4+ T-Cells, infected cells, infectious virus, and 

noninfectious virus. We first generate and normalize a workforce of 2500 data ( ) 

using the semi-implicit finite difference method given in [1]. 2000 data are used for learning 

the network and 500 to test network performance training. And finally, we generate a new 

1000 data using our network to validate and compare the identification results. The back-

propagation algorithm is applied several times (in the best case, 25 times). At each time, we 

randomly reinitialize the network settings to give a new stimulus to the calculations. 

 

Figures 5-8 show the evolution of the concentration in  under controlled therapy: the 

uninfected CD4+T-cells (Figure 5), infected cells (Figure 6), infectious virus (Figure 7),  and 

noninfectious virus (Figure 8). 
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Figure 5. Uninfected CD4+T-cells 

 

 

 

Figure 6. Infected cells 

 

 

 

Figure 7. Infectious virus 

 

Figure 8. Noninfectious virus 

 

The graphs present the predictive and the originals values of  obtained with 

our feed-forward neural network. Graphically, it is clear that the predictive values have the 

same behavior as the original; the small perturbation noticed is generated at a random 

initialization of the network parameters.   

 

Conclusion 

 

The life expectancy of patients infected with HIV has increased dramatically with the advent 

of antiviral treatment. In this paper, we described the development of a new approach for the 

identification and prediction of optimal treatment of HIV drugs in numerical models of the 

environment using neural network techniques. Training data were generated using the data of 

[1] and were normalized to converge back propagation. 

 

This approach provides us with an independent perspective mechanism of ideas specific to 

the therapy and allows rapid understanding of the behavior of HIV during treatment. This 

speed will help us to make good decisions with the aim of reducing the cost of treatment and 

avoiding critical phases of the disease. There is no effective treatment for HIV infection to 

cure this infection; existing treatments can only block the evolution of the virus in the body 

and maintain the balance between virus and defense system. 
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Among the identified risk factors, tobacco consumption is of paramount importance because 

it can be modified at the individual level. It turns out, however, that its control is difficult 

because of the existence of these psychosocial factors in persons living with HIV. This 

tobacco constraint will be added to the constraints of our approach in our next work, on the 

control treatment viral of HIV stress of smoking. 
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